报告题目:The Smith and Critical Groups of a Graph
报 告 人:向青 教授
主 持 人:李成举 副教授
报告时间:2018年7月2日 周一 17:00-18:00
报告地点:中北校区数学馆201室
报告人简介:
向青,1995获美国 Ohio State University博士学位, 现为美国特拉华大学(University of Delaware)教授。主要研究方向为组合设计、有限几何、编码和加法组合。现为国际组合数学界权威期刊《The Electronic Journal of Combinatorics》主编,同时担任SCI期刊《Designs, Codes and Cryptography》, 《Journal of Combinatorial Designs》的编委。曾获得国际组合数学及其应用协会颁发的杰出青年学术成就奖—Kirkman Medal。在国际组合数学界最高级别杂志《J. Combin. Theory Ser. A》,《J. Combin. Theory Ser. B》, 《Combinatorica》,以及《Trans. Amer. Math. Soc.》,《IEEE Trans. Inform. Theory》等重要国际期刊上发表学术论文80余篇。主持完成美国国家自然科学基金、美国国家安全局等科研项目10余项。曾在国际学术会议上作大会报告或特邀报告50余次。
报告摘要:
Let G be a nite graph and A its adjacency matrix. The Laplacian matrix of G is dened by L := D - A, where D is the diagonal matrix of degrees. Associated with G are two abelian groups. The rst is the Smith group S(G) and the second the critical group K(G). We will talk about these groups, with emphasis on the critical group. In particular, we will discuss the recent computations of the Smith and critical group of the Paley graph (in joint work with David Chandler and Peter Sin) using representation theory and number theory.